
Debugging CUDA Accelerated MPI Codes

Chris Gottbrath
Principal Product Manager, Rogue Wave Software

Aug 16th, 2011

Agenda

•  Rogue Wave Software
–  TotalView
–  MemoryScape
–  ReplayEngine
–  ThreadSpotter

•  CUDA Debugging
–  Intro and Demo

•  Memory Debugging
•  Automated Debugging
•  Technology Update

–  New Features and Capabilities
–  Scalability

•  Conclusion

Rogue Wave Today

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 2

Leader in embeddable math
and statistics algorithms and

visualization software for data-
intensive applications.

Industry-leading interactive
analysis and debugging tools for
the world's most sophisticated

software applications.

Leading provider of intelligent
software technology which

analyzes and optimizes
computing performance in single

and multi-core environments.

The largest independent provider of
cross-platform software development

tools and embedded components for the
next generation of HPC applications

PyIMSL
ReplayEngine

TotalView

MemoryScape

Rogue Wave Product Offerings

| Copyright © 2011 Rogue Wave Software | All Rights Reserved 3

IMSL

SourcePro C++

PV-WAVE

ThreadSpotter

What is TotalView?

•  Application Analysis and Debugging Tool: Code Confidently

–  Debug and Analyze C/C++ and Fortran on Linux, Unix or Mac OS X
–  Laptops to supercomputers (BG, Cray)
–  Makes developing, maintaining and supporting critical apps

easier and less risky

•  Major Features
–  Easy to learn graphical user interface with data

visualization
–  Parallel Debugging

•  MPI, Pthreads, OpenMP, GA, UPC
•  CUDA Support available

–  Includes a Remote Display Client freeing users to work from
anywhere

–  Includes Memory Debugging with MemoryScape
–  Reverse Debugging available with ReplayEngine
–  Includes Batch Debugging with TVScript and the CLI

What Is MemoryScape?

•  Runtime Memory Analysis : Eliminate Memory Errors

–  Detects memory leaks before they are a problem
–  Explore heap memory usage with powerful analytical tools
–  Use for validation as part of a quality software development process

•  Major Features
–  Detects

•  Malloc API misuse
•  Memory leaks
•  Buffer overflows

–  Supports
•  C, C++, Fortran
•  Linux, Unix, and Mac OS X
•  MPI, pthreads, OMP, and remote apps

–  Low runtime overhead
–  Easy to use

•  Works with vendor libraries
•  No recompilation or instrumentation

–  Enables Collaboration

•  Reverse Debugging Tool: Radically simplify your debugging
–  Captures and Deterministically Replays Execution
–  Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
–  Step Back and Forward by Function, Line, or Instruction

•  Major Features
–  Simple extension to TotalView

•  No recompilation or instrumentation
•  Explore data and state in the past just like in a

live process
–  Supported on Linux x86 and x86-64
–  Supports MPI, Pthreads, and OpenMP

What Is ReplayEngine?

What is ThreadSpotter?

•  Runtime Cache Performance Optimization Tool: Tune into the Multi-Core Era
–  Realize More of the Performance Offered by Multi/Many-Core Chips
–  Quickly Detects and Prioritizes Issues -- and then Provides Usable Advice!

•  Brings Cache Performance Into Reach for Every Developer
•  Makes Experienced Cache Optimizers Hyper-Efficient

•  Features
–  Supports Linux x86/x86-64
–  Any compiled code
–  Runtime Analysis

•  Low overhead
–  Cache Modeling

•  Prioritizes Issues
•  Identifies Problem Lines of Code

–  Provides Advice
•  Explanations
•  Examples
•  Detailed statistics (if desired)

Programming for the GP-GPU

•  CUDA
–  Function-like kernels are written for the calculations to be performed on

the GPU
•  Data parallel style, one kernel per unit of work

–  Presents a hierarchical organization for thread contexts
•  2D grid of blocks
•  3D block of thread

–  Exposes memory hierarchy explicitly to the user
–  Includes routines for managing device memory and data movement to

and from device memory using streams
•  Programming challenges

–  Coordinating CPU code + device code
–  Understanding what is going on in each kernel

•  Exceptions
–  Understanding memory usage
–  Understanding performance characteristics

TotalView for CUDA

•  Characteristics
–  Debugging of application running on

the GPU device (not in an emulator)
–  Full visibility of both Linux threads and

GPU device threads
–  Fully represent the hierarchical

memory
–  Thread and Block Coordinates
–  Device thread control
–  Handles CUDA function inlining
–  Reports memory access errors
–  Multi-Device Support
–  Can be used with MPI

•  Supports CUDA 4.0 (in beta)

Memory Debugging

•  Heap Memory
–  User is responsible for managing
–  C: Malloc / Free
–  C++: New / Delete
–  F90: Allocate / Deallocate

•  Buffer Overrun / Array Bounds Violations
•  Memory Leaks
•  Memory Optimization

Heap Array Bounds Violations

•  Writing Outside of Allocation
–  Can result in random errors
–  Dangling pointer
–  Array index error (off by one)

•  Guard Blocks
–  Lightweight (few byes per allocation)
–  Fast
–  Notification on demand
–  Notification after free

•  RedZones
–  Heavier (page per allocation)
–  Fast
–  Notification at point of error

12 12

Leak Detection

•  Leak Detection
•  Based on Conservative Garbage

Collection

•  Can be performed at any point in
runtime

•  Helps localize leaks in time

•  Multiple Reports

•  Backtrace Report

•  Source Code Structure

•  Graphically Memory Location

TotalView Technologies Confidential

Memory Optimization

•  Prevent OOM
errors

•  Mem Usage
–  Per process
–  Per library
–  Per function

•  Compare
–  Between

•  Processes
•  Points in Time
•  Datasets
•  Runs

•  Track
–  Automate reporting

Automatic Debugging

•  Non-Interactive Batch Debugging
–  Work in the “main” batch queue
–  Don’t have to baby-sit job waiting on it to run
–  Can script to perform checks that would be tedious to do by hand
–  Verification can be part of automated processes (nightly build and test)

•  Automatic Transformation of Data
–  Simplify interactive (and scripted) debugging
–  Perform validation/sanity checking of large datasets
–  Comparative debugging
–  Allows you to focus on troubleshooting your program

TVScript Overview

•  Gives you non-interactive access to TotalView’s capabilities
•  Useful for

–  Debugging in batch environments
–  Watching for intermittent faults
–  Parametric studies
–  Automated testing and validation

•  TVScript is a script (not a scripting language)
–  It runs your program to completion and performs debugger actions on it

as you request
–  Results are written to an output file
–  No GUI
–  No interactive command line prompt

TVScript Syntax

•  tvscript syntax: !
•  tvscript [options] [filename] [-a program_args]

•  Options express (“event”,”action”) pairs
•  Typical events

•  Action_point
•  Any_memory_event
•  Guard_corruption
•  error

•  Typical actions
•  Display_backtrace [-level level-num] [num_levels] [options]
•  List_leaks
•  Save_memory
•  Print [-slice {slice_exp] {variable | exp}

•  Example

 -create_actionpoint "#85=>print foreign_addr”!

• !!
!!!!!!!!!!!!!!!!!!!!
• ! Print!
• !!
• ! Process:!
• ! ./server (Debugger Process ID: 1, System ID: 12110)!
• ! Thread:!
• ! Debugger ID: 1.1, System ID: 3083946656!
• ! Time Stamp:!
• ! 06-26-2008 14:04:09!
• ! Triggered from event:!
• ! actionpoint!
• ! Results:!
• ! foreign_addr = {!
• ! sin_family = 0x0002 (2)!
• ! sin_port = 0x1fb6 (8118)!
• ! sin_addr = {!
• ! s_addr = 0x6658a8c0 (1717086400)!
• ! }!
• ! sin_zero = ""!
• ! } !
• !!
!!!!!!!!!!!!!!!!!!!!
!

C++View

•  C++View is a simple way for you to define type transformations
–  Simplify complex data
–  Aggregate and summarize
–  Check validity

•  Transforms
–  Type-based
–  Compose-able
–  Automatically

visible
•  Code

–  C++
–  Easy to write
–  Resides

in target
–  Only called by

TotalView

C++View Interface

•  Only two functions:

int TV_ttf_display_type (const T *)

int TV_ttf_add_row (
 const char * field_name,
 const char * field_type,
 const char * address)

Scalability In TotalView Today

•  A Long History of Leadership
–  Have worked with customers such as LLNL, LANL, Sandia and others on

scalability improvements for many years
•  TotalView Architecture

–  No Hard Limit
–  Multi-Platform (Cray, IBM BG, Linux Clusters, etc..)
–  Efficient Use of Cluster Resources

•  Extremely light weight debug agents
•  Minimal memory footprint (efficient shared data structures)
•  Each agent can control many processes and threads

–  Challenging User Applications
•  More space on the compute nodes for user application code

–  Full Control of Debugger Components
•  Changes focused on HPC needs

•  Customer Experiences
–  TotalView is regularly used to debug scales of up to 10k processes
–  TotalView is also used on >10k processes

Research and Development

•  Current Focus Areas
–  Transition TotalView from a flat 1:N communication to a tree
–  Scalable presentation of state and data
–  Usability at scale
–  Application driven tuning: Optimization focused on real-world applications and workloads

•  Across various machines
•  Goals

–  Provide performance at >100,000 tasks to be debugged
–  Setting the stage for the millions of tasks we expect to see at exascale

•  Several Concurrent Projects
–  FastOS project with Bart Miller and Mike Brim of University of Wisconsin

•  TBON-FS Group File Operations
•  Academic research based on MRNet & Dyninst components

–  LLNL Petascale Parallel Debugger Scalability contract
•  MRNet - product R & D
•  Multi-platform: BlueGene/Q, Cray XT/XE/XK, Linux Cluster
•  Preliminary results

–  First user observable improvements are in start up time
–  5x improvement in at-scale start up performance on Cray
–  20x improvement in at-scale start up performance on a “vanilla” linux cluster.

–  LLNL IDDA Dynamic Application contract
•  Focusing on a class of tool-breaking applications
•  Thousands of DLLs and Huge Symbol Table Size

Peta and Exascale Scalability

•  R&D work is planned to roll into the product releases 2012 and 2013
–  Multi-platform Application Based Optimization

•  Cray XT/XE/XK, Blue Gene/Q, Linux clusters
•  Scientific applications including especially dynamic apps
•  GPU accelerated cluster scalability

–  Tree-Based Overlay Network
•  Broadcast of Operations
•  Aggregation of Events and Data

–  UI Layer
•  New GUI Framework
•  Co-Design of Advanced Displays for Debugging at Scale
•  Simplifed Discovery of Relevant Information Through Aggregation

•  These changes set the stage for exascale debugging
–  Multi-platform
–  Highly real-world optimized
–  Tree based
–  Low resource usage
–  Support for computational accelerator technology
–  Highly flexible architecture with an exclusive focus on HPC

Recent Changes

•  TV 8.9 series
–  Powerful parallel debugging
–  Support for CUDA 3.0 - 4.0 (in beta)
–  New Views: Multi-dimensional Array & Parallel

Backtrace
–  C++View and TVScript for Automatic Debugging
–  Easy and Secure Remote Graphical Display
–  Updated platform support

•  ReplayEngine 2.0 series
–  Deterministic Replay Radically Transforms

Debugging
–  Brings Reverse Debugging to HPC Clusters

•  MemoryScape 3.2 series
–  Memory Leaks and Array Bounds Checking for

HPC
–  Red Zones for Instant Array Bounds Checking

•  ThreadSpotter 2011
–  Memory Cache Optimization Made Easy

Summary

•  Rogue Wave
HPC tools, components and libraries
Parallel Programming is Hard, We Make it Easier

•  Debugging with the TotalView Family of Products
–  Advanced, Scalable, Graphical, Easy to Use
–  MPI Debugging
–  CUDA Debugging
–  Memory Debugging
–  Automated Debugging
–  Deterministic Reverse Debugging

•  Optimization with ThreadSpotter
–  Programmer Friendly Analysis of Cache and Memory Use

Thanks!

•  Contact me

–  Chris.Gottbrath@RogueWave.com

•  or my colleagues

–  Ian.Dillan@RogueWave.com

–  Ed.Hinkel@RogueWave.com

•  or for more information

Check out: www.roguewave.com

Email: TVSupport@roguewave.com

